Roots of a Type of Generalized Quasi-Fibonacci Polynomials
نویسنده
چکیده
Let a be a nonnegative real number and define a quasi-Fibonacci polynomial sequence by F a 1 (x) = −a, F a 2 (x) = x − a, and F a n (x) = F a n−1(x) + xF a n−2(x) for n ≥ 2. Let ra n denote the maximum real root of F a n . We prove for certain values of a that the sequence {ra 2n} converges monotonically to βa = a 2 + a from above and the sequence {ra 2n+1} converges monotonically to βa from below.
منابع مشابه
Fibonacci Fields
In this paper, we consider fields determined by the /1 roots of the zeros a and fi of the polynomial x x 1 ; a is the positive zero. The tools for studying these fields will include the Fibonacci and Lucas polynomials. Generalized versions of Fibonacci and Lucas polynomials have been studied in [1], [2], [3], [4], [5], [6], [7], and [12], among others. For the most part, these generalizations c...
متن کاملGeneralized Bivariate Fibonacci Polynomials
We define generalized bivariate polynomials, from which specifying initial conditions the bivariate Fibonacci and Lucas polynomials are obtained. Using essentially a matrix approach we derive identities and inequalities that in most cases generalize known results. 1 Antefacts The generalized bivariate Fibonacci polynomial may be defined as Hn(x, y) = xHn−1(x, y) + yHn−2(x, y), H0(x, y) = a0, H1...
متن کاملBinomial Identities Involving The Generalized Fibonacci Type Polynomials
We present some binomial identities for sums of the bivariate Fi-bonacci polynomials and for weighted sums of the usual Fibonacci polynomials with indices in arithmetic progression.
متن کاملGeneralized Bivariate Fibonacci-Like Polynomials and Some Identities
In [3], H. Belbachir and F. Bencherif generalize to bivariate polynomials of Fibonacci and Lucas, properties obtained for Chebyshev polynomials. They prove that the coordinates of the bivariate polynomials over appropriate basis are families of integers satisfying remarkable recurrence relations. [7], Mario Catalani define generalized bivariate polynomials, from which specifying initial conditi...
متن کاملHOMFLY Polynomials of Torus Links as Generalized Fibonacci Polynomials
The focus of this paper is to study the HOMFLY polynomial of (2, n)-torus link as a generalized Fibonacci polynomial. For this purpose, we first introduce a form of generalized Fibonacci and Lucas polynomials and provide their some fundamental properties. We define the HOMFLY polynomial of (2, n)-torus link with a way similar to our generalized Fibonacci polynomials and provide its fundamental ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2013